Optimization of linear objective function subject to Fuzzy relation inequalities constraints with max-product composition
نویسندگان
چکیده مقاله:
In this paper, we study the finitely many constraints of the fuzzyrelation inequality problem and optimize the linear objectivefunction on the region defined by the fuzzy max-product operator.Simplification operations have been given to accelerate theresolution of the problem by removing the components having noeffect on the solution process. Also, an algorithm and somenumerical and applied examples are presented to abbreviate andillustrate the steps of the problem resolution.
منابع مشابه
OPTIMIZATION OF LINEAR OBJECTIVE FUNCTION SUBJECT TO FUZZY RELATION INEQUALITIES CONSTRAINTS WITH MAX-AVERAGE COMPOSITION
In this paper, the finitely many constraints of a fuzzy relationinequalities problem are studied and the linear objective function on the regiondefined by a fuzzy max-average operator is optimized. A new simplificationtechnique which accelerates the resolution of the problem by removing thecomponents having no effect on the solution process is given together with analgorithm and a numerical exa...
متن کاملoptimization of linear objective function subject to fuzzy relation inequalities constraints with max-product composition
in this paper, we study the finitely many constraints of the fuzzyrelation inequality problem and optimize the linear objectivefunction on the region defined by the fuzzy max-product operator.simplification operations have been given to accelerate theresolution of the problem by removing the components having noeffect on the solution process. also, an algorithm and somenumerical and applied exa...
متن کاملoptimization of linear objective function subject to fuzzy relation inequalities constraints with max-average composition
in this paper, the finitely many constraints of a fuzzy relationinequalities problem are studied and the linear objective function on the regiondefined by a fuzzy max-average operator is optimized. a new simplificationtechnique which accelerates the resolution of the problem by removing thecomponents having no effect on the solution process is given together with analgorithm and a numerical exa...
متن کاملLinear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints
In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...
متن کاملLinear optimization of fuzzy relation inequalities with max-Lukasiewicz composition
In this paper, we study the finitely many constraints of fuzzy relation inequalities problem and optimize the linear objective function on this region which is defined with fuzzy max-Lukasiewicz operator. In fact Lukasiewicz t-norm is one of the four basic t-norms. A new simplification technique is given to accelerate the resolution of the problem by removing the components having no effect on ...
متن کاملlinear objective function optimization with the max-product fuzzy relation inequality constraints
in this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. we study this problem and capture some special characteristics of its feasible domain and optimal s...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 3
صفحات 51- 71
تاریخ انتشار 2010-10-09
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023